Skip to main content
Filters

    Results for Chemicals & Small Molecules ( 80722 )

      • Ref: 04404-84
        Sizes: 200µg

        Biochemicals Grade

        Product detail
      • Ref: 1006-5g
        Sizes: 5g

        Methylthiazolyldiphenyl-tetrazolium utilized for cell viability detection

        Product detail
      • Ref: 3030-100ml
        Sizes: 100ml

        F Manufactured by GERBU. extra mild formula for vaccination of sensitive animals

        Product detail
      • Ref: AS-81441-5
        Sizes: 5 mg

        Tetramethylrhodamine-5-(and-6) C2 maleimide is a good alternative to tetramethylrhodamine-5-(and-6)-maleimide with excitation/emission wavelength at 544/572 nm. Its spectral characteristics are very close to those of tetramethylrhodamine-5-(and-6)-maleimide (+2 nm). It is 40% less expensive compared to tetramethylrhodamine-5-(and-6)-maleimide, and can be used for thiol modification of proteins, antibodies and peptides.

        Product detail
      • Ref: B-0344
        Sizes: 5 mg, 25 mg

        SH2-Domain containing inositol 5-phosphatases (SHIP1 & SHIP2) dephosphorylate the 5-position of PI(3 4 5)P3 generating PI(3 4)P2. SHIP2 is ubiquitously expressed while SHIP1 is found in hematolymphoid cells and mesancymal stem cells. K118 is a water soluble SHIP1 inhibitor which does not inhibit SHIP2. Treatment with K118 (10 mg/kg) on obese mice on a high fat diet resulted in reduced body mass and lowered fat content when compared to pre-treatment and non-treated control animals. The treated mice had reduced blood glucose and insulin levels in addition to improved glucose tolerance. K118 treatment also reduced the amount of age-related fat accumulation in mice.

        Product detail
      • Ref: S-0151
        Sizes: 100 mg, 10 mg

        Farnesoic acid ((2E 6E)-3 7 11-trimethyldodeca-2 6 10-trienoic acid) is the substrate of farnesoic acid O-methyltransferase which produces the crustacean reproductive hormone methyl farnesoate (MF). MF is responsible for enhancing reproductive maturation maintaining juvenile morphology and influencing male sex determination. Farnesoic acid also inhibits filiment formation in C. albicans. Powered by Bioz See more details on BiozFeatured in Publications1) Li Y. G. C. Unnithan et al. (2003). "Stimulation of JH biosynthesis by the corpora allata of adult female Aedes aegypti in vitro: effect of farnesoic acid and Aedes allatotropin." J Exp Biol 206(Pt 11): 1825-32.2) Zhao N. J. Guan et al. (2007). "Molecular cloning and biochemical characterization of indole-3-acetic acid methyltransferase from poplar." Phytochemistry 68(11): 1537.3) Chung S.-C. T.-I. Kim et al. (2010). "Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid." FEBS letter

        Product detail
      • Ref: S-0153
        Sizes: 100 mg, 10 mg

        Methyl farnesoate (MF) is a crustacean reproductive hormone that is structurally similar to insect juvenile hormone. It is responsible for enhancing reproductive maturation maintaining juvenile morphology and influencing male sex determination. Exposure of female Daphnids to increasing levels of MF increases the percentage of males in a brood in a dose-dependant manner. MF is endogenously produced in the mandibular organ and environmental factors such as salinity and temperature can influence hemolyph levels. Powered by Bioz See more details on BiozFeatured in Publications1) Olmstead A. W. and G. A. LeBlanc (2007). "The environmental-endocrine basis of gynandromorphism (intersex) in a crustacean." Int J Biol Sci 3(2): 77-84.2) Eads B. D. J. Andrews et al. (2007). "Ecological genomics in Daphnia: stress responses and environmental sex determination." Heredity 100(2): 184.3) Nagaraju G. P. C. and D. W. Borst (2008). "Methyl farnesoate couples environmental changes to testicular d

        Product detail
      • Ref: 331-20017-2
      • Ref: 331-20133-1